
The Best Views of Trentino’s Mountaintops: A Visibility
Network Analysis

Geospatial Analysis and Representation for Data Science Course Master’s
Degree in Data Science Academic Year 2023/2024

Davide Calzà

Abstract

This report outlines a set of procedures for analysing the visibility among mountain
peaks and trails in the “Provincia Autonoma di Trento” area, Italy, leveraging on a Dig-
ital Elevation Model (DEM). The presented solution aims to identify the mountaintops
in the region and compute a Peaks Visibility Network (PVN), which is an undirected
graph where nodes represent peaks, and edges indicate mutual visibility. The article
provides both an overview of the most connected mountaintops, and a ranking of the
most panoramic mountain trails based on a score that measures the visibility between
the routes and the peaks. Additionally, it includes a review of existing algorithms and
approaches for visibility analysis, along with suggestions for several improvements to
enhance the quality and efficiency of the results. This work demonstrates the potential
applications of the presented visibility analysis techniques for studying mountaintops.
These applications include optimal placement of observation and communication points,
historical and military analysis, routing recommender systems, and augmented reality.

Table of contents
1 Introduction 1

2 Related Works 2

3 Data Description 3
3.1 TINITALY Digital Elevation Model . 3
3.2 ISTAT Italian boundaries . 3
3.3 SAT Trentino mountain trails . 4

4 Solution and results 4
4.1 Data Analysis and Preprocessing . 5

4.1.1 Data Retrieval . 5
4.1.2 Data Exploration . 7
4.1.3 Data Preprocessing . 9

4.2 Mountaintops Detection . 12
4.3 Visibility Analysis . 16

1

4.3.1 Visibility Definition . 16
4.4 Peaks Visibility Network . 20
4.5 Routes Visibility Analysis . 25

5 Future Work 28

6 Conclusions 29

7 Appendix 30
7.1 Configuration file . 30
7.2 Numba . 31
7.3 Quarto . 32

1 Introduction
Visibility analysis is an important problem in geospatial research, with many applications in
the field of Geographic Information Systems (GIS). Digital Elevation Models (DEM) are a
commonly used representation of terrain elevation, often provided in a raster format. Each
cell in the DEM represents the elevation of the terrain at that point. Several algorithms and
approaches have been proposed in the literature[1] to exploit the information contained in
the DEM for visibility analysis applications.

One subject area that may find visibility analysis relevant is the study of mountaintops. For
example, a visibility network can be computed among mountain peaks to optimally position
observation and panoramic points or communication towers. Additionally, topographical
information about the mountains and their elevation has historically been crucial for es-
tablishing strategic military points. Furthermore, by extending the analysis techniques to
mountain trails, it is possible to define a “panoramicity” score, which can be integrated into
routing or tourism-oriented recommender systems.

The purpose of this report is to outline procedures for analysing visibility among a set
of predefined points. Specifically, given the DEM of a particular region, the aim is to
identify mountaintops in the area and establish a visibility network among them. This
Peaks Visibility Network (PVN) is an undirected graph where edges connect two nodes
(mountaintops) if they are mutually visible. Additionally, this report provides a ranking of
the most panoramic mountaintops and mountain trails in the specified region by using the
presented visibility analysis techniques. The Region-Of-Interest (ROI) considered for the
results presented is the “Provincia Autonoma di Trento” (Trentino), Italy.

The report is structured as follows: Section 2 analyses the state-of-the-art related to the
research question. Furthermore, Section 3 provides a description and preliminary overview
of the datasets used in the analysis. The proposed solution and results are presented in
Section 4, where the procedures adopted for the visibility analysis are described in detail.
Finally, Section 5 reports potential future work to integrate the presented solution, and
conclusions are drawn in Section 6.

2

2 Related Works
Visibility analysis is a well-established topic in GIS literature. Various research surveys
have explored the state-of-the-art of visibility algorithms. Floriani and Magillo[1] provide
a detailed overview of existing visibility algorithms on DEMs computed from Triangulated
Irregular Networks (TINs) and Regular Square Grids (RSGs). The authors emphasise the
importance of computational efficiency when considering algorithms for practical use. They
recommend using algorithms with lower computational complexity and including probability
indexes in the analyses. This is because both the computation of the DEMs and the visibility
algorithms may involve some degree of approximation. It has been suggested that parallel
computation may be beneficial for processing high-resolution and computationally heavy
DEMs. Song et al.[2] have provided a domain decomposition algorithm for exploiting parallel
computing, further supporting this thesis. However, according to a recent study by Inglis et
al.[3], the effectiveness of various solutions is highly dependent on the specific applications
and use-cases, and many of them are representative of the Global North. This presents
challenges in developing a scalable approach.

The aforementioned studies include visibility analysis for different scenarios, such as point-
to-point, point-to-area, and area-to-area. They all focus on the computational complexity
of the algorithms, indicating that a trade-off between analysis accuracy and computational
complexity is a crucial research focus in the field.

Mountaintops detection also finds relevance in the literature. For instance, Podobnikar[4]

proposes a novel approach for the detection of mountain peaks by exploiting DEM infor-
mation, remote sensing, and GIS. It adopts the Peucker and Douglas method[5] for the
detection of local peaks. The author further suggests a five-step procedure for the cleaning
and refinement of the detected peaks, and exploits topographic and morphologic information
for the delineation of their shapes. Mountain peaks detection finds place also in real-time
processing such as mobile applications for the recognition of mountaintops by leveraging on
augmented reality techniques[6].

3 Data Description
The datasets adopted for the presented analysis are open data, hence publicly available.
Overall, three public sources are accessed (Table 1). Access, exploration and preprocessing
of the datasets are described in Section 4.

Table 1: Accessed public datasets with relative information and usage rights

Name Author CRS EPSG License
TINITALY

1.1[7,8]Digital
Elevation

Model

©
INGVTarquini

et al.

WGS84UTM
zone 32N

32062 CC BY 4.0

ISTAT[9]Italian
boundaries

© ISTAT WGS84UTM
zone 32N

32062 CC BY 3.0

3

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/3.0

Name Author CRS EPSG License
SAT[10]Trentino

mountain
trails

© Società
degliAlpinisti

Tridentini
(SAT)

ETRS89UTM
zone 32N

25832 ODbL

3.1 TINITALY Digital Elevation Model
TINITALY 1.1 is an improved Digital Elevation Model (DEM) provided by the Istituto
Nazionale di Geofisica e Vulcanologia (INGV)[7,8]. It covers the entire Italian surface with
a resolution of 10 metres. The authors propose a Triangular Irregular Network (TIN) DEM
format, as it revealed to be the most accurate in relation to the density of the input data. The
elevation data was retrieved from multiple sources, such as the Italian regional topographic
maps, satellite-based GPS points, ground-based and radar altimetry data[8]. Additional
information can be found in the paper and on the website. The data is available split in
multiple tiles, each covering an area of approximately 2500 km2, in a GeoTIFF format. The
adopted Coordinate Reference System is WGS84 - UTM zone 32N (EPSG:32602). The work
and the dataset are licensed under the Creative Commons Attribution 4.0 license (CC BY
4.0). This dataset is the core of the visibility analyses, as it contains the necessary terrain
elevation data.

3.2 ISTAT Italian boundaries
The information about the boundaries of the Italian administrative units are retrieved from
the public dataset published by the Istituto Nazionale di Statistica (ISTAT)[9]. The dataset
was last updated on January 1st, 2023, and is available in two versions: a generalized
version (less detailed) and a non-generalized version (more detailed). The data is released in
a Shapefile format using the WGS84 - UTM zone 32N (EPSG:32602) Coordinate Reference
System. The dataset is licensed under the Creative Commons Attribution 3.0 license (CC
BY 3.0). Further information, such as the description of the available data and the columns
of the datasets can be found on the ISTAT website. This dataset is required to circumscribe
the visibility analyses to a limited region of interest, based on administrative boundaries.

3.3 SAT Trentino mountain trails
The dataset providing a list of the available mountain trails in the Provincia Autonoma di
Trento is released by the Società Alpinisti Tridentini (SAT)[10], that operates to maintain
the tracks. The dataset contains about 5500 km of mountain trails in the region. It con-
tains various information about the trails, such as the elevation gain, the estimated time to
complete the track and their length. It is released in a Shapefile format using the ETRS89
/ UTM zone 32N (EPSG:25832) Coordinate Reference System. The dataset is licensed un-
der the Open Data Commons Open Database License (ODbL). This dataset provides an
accurate representation of the available mountain trails in the region. Alternatively, it may
be possible to gather information about mountain tracks from other public sources such as
OpenStreetMap.

4

https://opendatacommons.org/licenses/odbl/1.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://opendatacommons.org/licenses/odbl/1.0/

4 Solution and results
This section outlines all the procedures and analysis used to address the initial research
question, including data retrieval, analysis and processing, as well as visibility analysis and
results. The entire workflow, from the raw data to the final results is depicted in Figure 1
flowchart. Briefly, the steps necessary to produce the results are: data preprocessing (Sec-
tion 4.1), mountaintops detection (Section 4.2), visibility analysis of both peaks (Section 4.3)
and routes (Section 4.5).

The entire approach was developed with the aim of providing a general-purpose solution in a
scalable way, in order to easily extend it to different regions of interest and different data sets.
If different data sources are used, a custom plugin can be developed to adapt the new data
to the input formats used. The following procedures are intended to be used as a starting
point for the building of an efficient pipeline; to this end, for simplicity and for computational
efficiency, trivial algorithms are employed. Possible integrations and enhancements of the
presented work are reported in Section 5.

The presented work is developed using Python, public datasets and open-source software;
it can be handled entirely from a configuration file, which is described in the appendix
(Section 7.1). Moreover, a random seed is set for reproducibility. The source code can be
found at the following link: gitlab.com/davidecalza/unitn_geospatial.

conf = OmegaConf.load("config.yaml")
utils.set_environment(conf.env.seed)
os.makedirs(conf.env.figures.path, exist_ok=True)

Figure 1: Solution flowchart for finding most panoramic peaks and routes

5

https://gitlab.com/davidecalza/unitn_geospatial

4.1 Data Analysis and Preprocessing
4.1.1 Data Retrieval

The preliminary step consists in accessing the data and exploring it. In order to provide a
reproducible workflow, the datasets are automatically downloaded. In the case of the ISTAT
boundaries and the SAT routes, the access is straightforward, as they are simple archives
containing the shapefiles; therefore, they share a common interface (function download_zip
in the src/data.py module). On the other hand, as previously mentioned in Section 3,
the DEM data is divided into multiple tiles. Since the research question focuses on a well-
defined region of interest, it is possible to indicate in the configuration file the only tiles to
download, by referencing them with their code (e.g., w51560), without handling the entire
dataset. The download process is implemented in the download_dem function and it retrieves
the resources endpoints by scraping the TINITALY website.

28 def download_zip(url: str, outpath: str):
29 """download_zip.
30

31 Download a zip file from a given url and extract it to a specified
32 output path. The function also disables warnings and verifies the
33 SSL context.
34

35 :param url: the url of the zip file to download
36 :type url: str
37 :param outpath: the output path where the zip file will be
38 extracted
39 :type outpath: str
40 """
41 urllib3.disable_warnings()
42 os.makedirs(outpath, exist_ok=True)
43 ssl._create_default_https_context = ssl._create_unverified_context
44 #
45 r = requests.get(url, verify=False, timeout=100)
46 if r.status_code == 200:
47 with zipfile.ZipFile(io.BytesIO(r.content)) as zfile:
48 zfile.extractall(outpath)
49 else:
50 ut.excerr(f"Unable to download {url}")

53 def download_dem(
54 url_root: str,
55 url_download: str,
56 outpath: str,
57 tiles: Union[str, List[str]] = 'all'
58):
59 """download_dem.
60

61 Download and extract Digital Elevation Model (DEM) files from a

6

62 given url root and download link.
63 The function also disables warnings and verifies the SSL context.
64 This function requires careful handling when downloading from
65 different website than TINITALY (https://tinitaly.pi.ingv.it/).
66

67 :param url_root: the url root of the website that hosts the DEM
68 files
69 :type url_root: str
70 :param url_download: the url download link of the DEM files
71 :type url_download: str
72 :param outpath: the output path where the DEM files will be
73 extracted
74 :type outpath: str
75 :param tiles: the codes of the tiles of the DEM files to download
76 (e.g., ['w51560']), default to 'all'
77 :type tiles: Union[str, List[str]]
78 """
79 urllib3.disable_warnings()
80 os.makedirs(outpath, exist_ok=True)
81 ssl._create_default_https_context = ssl._create_unverified_context
82 #
83 with urllib.request.urlopen(
84 os.path.join(url_root, url_download)
85) as response:
86 soup = BeautifulSoup(response, "html.parser")
87 urls = []
88 #
89 for link in soup.findAll('area'):
90 end = os.path.join(url_root, link.get('href'))
91 if tiles == 'all' or np.any([t in end for t in tiles]):
92 urls.append(end)
93 for u in tqdm(urls, desc="Downloading DEMs", unit="Tile"):
94 download_zip(u, outpath)

if conf.dem.download:
data.download_dem(

url_root = conf.dem.url.root,
url_download = conf.dem.url.download,
outpath = conf.dem.path,
tiles = conf.dem.tiles)

if conf.boundaries.download:
data.download_zip(

url = conf.boundaries.url,
outpath = conf.boundaries.path.root)

if conf.routes.download:
data.download_zip(

url = conf.routes.url,

7

outpath = conf.routes.path)

4.1.2 Data Exploration

A preliminary data exploration phase aims at verifying the congruence of the accessed data
and its content. First, all the downloaded DEM tiles are checked to see if they share the
same CRS and congruent shapes. Their height and width are also computed from their
boundaries coordinates, to check if they are compatible with the declared resolution of 10
metres. Since we are analysing the rasters that are close to the boundaries of Italy, some
of them may have different shapes (see Table 2). This is visible also from the TINITALY
website[7].

Table 2: Metadata of the downloaded DEM tiles.

CRS Shape Height [km] Width [km]
Tile
w51560 EPSG:32632 (5005, 5010) 50.05 50.1
w51060 EPSG:32632 (5010, 5010) 50.10 50.1
w50560 EPSG:32632 (5010, 5010) 50.10 50.1
w51565 EPSG:32632 (5010, 5010) 50.10 50.1
w51065 EPSG:32632 (5010, 5010) 50.10 50.1
w50565 EPSG:32632 (5010, 5010) 50.10 50.1
w51570 EPSG:32632 (5010, 5010) 50.10 50.1
w51070 EPSG:32632 (5010, 5010) 50.10 50.1
w50570 EPSG:32632 (5010, 5010) 50.10 50.1

Afterwards, the ISTAT boundaries shapefile is loaded and checked. It provides several
columns, with a non-descriptive nomenclature. Since the focus of the research question is to
apply analysis on the territory of the “Provincia Autonoma di Trento”, then the shapefile of
interest is located in the downloaded folder starting with Prov, and the column of interest
is DEN_UTS. Through this column it is possible to access the desired geometry. If the area
of interest of the research question was an italian region (e.g., Trentino-Alto Adige), then
the correct shapefile would be located in the folder starting with Reg. More information
about the structure of the downloaded data and the description of the columns is provided
by ISTAT on their website[9].

reg = gpd.read_file(os.path.join(conf.boundaries.path.root, conf.boundaries.path.shp))
print("COLUMNS: " + str(reg.columns))
print("CRS: " + str(reg.crs))

COLUMNS: Index(['COD_RIP', 'COD_REG', 'COD_PROV', 'COD_CM', 'COD_UTS', 'DEN_PROV',
'DEN_CM', 'DEN_UTS', 'SIGLA', 'TIPO_UTS', 'Shape_Area', 'geometry'],

dtype='object')
CRS: EPSG:32632

reg = reg.loc[reg.DEN_UTS.str.lower().str.contains(str(conf.boundaries.region).lower())]
reg

8

COD_RIP COD_REG COD_PROV COD_CM COD_UTS DEN_PROV DEN_CM DEN_UTS SIGLA TIPO_UTS Shape_Area geometry
21 2 4 22 0 22 Trento - Trento TN Provincia autonoma 6.208170e+09 POLYGON ((716676.337 5153931.623, 716029.354 5...

Similarly, the same exploration is carried out for the SAT routes data. As previously men-
tioned in Section 3, the routes data is reported in a different CRS than the DEM and the
boundaries data. Therefore, in the preprocessing phase, it must be converted for uniformity.
The shapefile reports different information about the routes, such as the difficulty levels of
the tracks, or elevation gain and length of the trails. Since the length of the routes is also
reported, both in terms of planimetry and with inclinations, it may be necessary to verify
if they are consistent with the length of the geometry computed by GeoPandas[11]. To this
end, an error column is added to the dataframe. The distribution of the quantitative vari-
ables is shown in Figure 2. As it is observable, the routes are heterogeneous both in terms
of elevations and length. Some routes are longer than 60 km, while others are shorter than
200 metres. This means that careful attention is required in assigning scores to routes, by
weighting them in some way based on these parameters. The errors between the nominal
length and the computed ones range from -5 to +5 metres; therefore, they can be neglected
for this context. Lastly, it may happen that some of the mountain trails maintained by the
SAT fall outside the boundaries of the region. This may be a problem in further analysis.
Therefore, routes that fall outside the area of interest should be excluded in the preprocess-
ing phase. A representation of the distribution of the routes on the regional area is depicted
in Figure 3.

routes = gpd.read_file(conf.routes.path)
print("COLUMNS: " + str(routes.columns))
print("CRS: " + str(routes.crs))

COLUMNS: Index(['numero', 'competenza', 'denominaz', 'difficolta', 'loc_inizio',
'loc_fine', 'quota_iniz', 'quota_fine', 'quota_min', 'quota_max',
'lun_planim', 'lun_inclin', 't_andata', 't_ritorno', 'gr_mont',
'comuni_toc', 'geometry'],

dtype='object')
CRS: EPSG:25832

routes['error'] = routes.geometry.length-routes.lun_planim

4.1.3 Data Preprocessing

The preprocessing phase is a critical step in the entire analysis, since it allows for data
cleaning, uniformity, and rescaling. As shown in Figure 1, the preprocessing phase is divided
into two main modules: one for the DEM data, and one for the routes, which compose the
two main datasets for the subsequent visibility analysis.

As previously mentioned, DEM data is provided split in different tiles at a resolution of 10
metres. For simplicity and a more efficient computation, each of the downloaded tiles is first
downsampled. This operation obviously degrades the quality of the DEM data; therefore,
for more accurate analysis, this step may be omitted. The downsampling resolution adopted
is 100 metres, and the used resampling technique is the maximum value. This means that

9

Figure 2: Distribution of the quantitative columns of the routes shapefile.

<IPython.lib.display.IFrame at 0x7f8bd8b2c990>

Figure 3: Exploratory analysis of in- and out-of-bounds routes.

the convolution operation for the downsampling takes the maximum value and applies it to
the relative cell. This choice was made in order to highlight the most prominent peaks in
the region. Subsequently, the downsampled tiles are merged together in one unique raster,
in order to ease the further computations. Also this step can be omitted whether parallel
processing is integrated, as suggested in Section 2.

In the preliminary development stages, the merged raster was eventually clipped to the
regional area. After some analysis it was found that restricting the DEM to the ROI resulted
in a strong approximation. This means that peaks were only searched for in the ROI and
not outside, with consequences and bias in the final analysis. A consequence of clipping was
the generation of not-a-number values in the cells outside the region of interest. This led
to two main critical issues: firstly, peaks positioned in the middle of the ROI had higher
degrees, i.e. the number of peaks visible from that point, compared to those at the extremes.
This was due to the fact that a peak near the edges of the ROI was less likely to have the
same degree as a peak in the centre. Secondly, two peaks with an undefined DEM on the
trajectory of their line of sight were not considered visible, as the elevation in that area was
unknown. It can be assumed that the undefined areas have zero elevation, but this may
have been too strong as assumption. For this reason, the entire DEM was retained without
clipping, in order to avoid having undefined areas on the lines of sight of the peaks. However,
the information about the boundaries of the ROI is necessary to focus the analyses on this
specific area. For example, any peak inside the ROI will search for peaks in the entire DEM
area provided; on the contrary, peaks outside the DEM will not search for visibility towards
other peaks, but will only be used as visibility targets. Therefore, the size of the surrounding

10

DEM should be calibrated according to the needs and the use case.

As regards the routes dataset, it is first converted to the same CRS as the DEM and the
boundaries data, i.e., the WGS84 - UTM 32N. As previously mentioned, only those routes
that are completely within the ROI are retained. Moreover, two additional variables (row and
col) are added for referencing the geometries in terms of rows and columns of their position
in the raster to facilitate further analysis. The same operation is applied to the boundaries
of the Region of Interest dataset. As aforementioned, the routes dataset is released under
the ODbL license; therefore, the processed version of the dataset is also released under the
same license.

All the processed datasets are saved locally, in order to be used in the subsequent analysis
without requiring to perform the preprocessing procedure again.

if conf.env.prepare_data:
Merge tiles into unique raster and downsample
raster = data.merge_rasters(conf.dem.path, conf.dem.tiles, resolution=conf.dem.downsampling)
Get regional (provincial) boundaries
reg = gpd.read_file(os.path.join(conf.boundaries.path.root, conf.boundaries.path.shp))
reg = reg.to_crs(raster.rio.crs)
reg = reg.loc[reg.DEN_UTS.str.lower().str.contains(str(conf.boundaries.region).lower())]
Clip raster to region boundaries
raster = raster.rio.clip(reg.geometry.values, reg.crs)
Save raster
raster.rio.to_raster(conf.dem.output)
Routes preparation
routes = gpd.read_file(conf.routes.path)
routes = routes.to_crs(raster.rio.crs)
Extract rows and columns coordinates of each point in the line
routes['coords'] = routes['geometry'].apply(lambda x: x.coords.xy)
routes['row'], routes['col'] = zip(*routes['coords'].apply(

lambda x: rio.transform.rowcol(raster.rio.transform(), x[0], x[1])))
routes = routes.drop(['coords'], axis=1)
Do the same for the region
reg['coords'] = reg['geometry'].apply(lambda x: x.boundary.coords.xy)
reg['row'], reg['col'] = zip(*reg['coords'].apply(

lambda x: rio.transform.rowcol(raster.rio.transform(), x[0], x[1])))
reg = reg.drop(['coords'], axis=1)
Take routes only inside region of interest
routes = routes[routes.within(reg.geometry.values[0])]
routes.to_parquet(conf.routes.output)
reg.to_parquet(conf.boundaries.output)

97 def merge_rasters(
98 root: str,
99 tiles: List[str],

100 resolution: int = 100
101) -> xr.DataArray:

11

102 """merge_rasters.
103

104 Merge multiple raster files from a given root directory and a list
105 of tiles. The function also optionally reprojects the rasters to a
106 specified resolution and resampling method.
107 Resampling method is set to 'max' by default, meaning that the
108 maximum value is retained in the rolling windows of the operation.
109

110 :param root: the root directory where the raster files are stored
111 :type root: str
112 :param tiles: the list of tiles to merge
113 :type tiles: List[str]
114 :param resolution: the resampling resolution to reproject the
115 rasters, default to 100
116 :type resolution: int
117 :return: a merged array of the rasters with nodata values set to
118 np.nan
119 :rtype: xr.DataArray
120 """
121 rasters = []
122 for tile in tiles:
123 t = f'{tile}_s10'
124 path = os.path.join(root, t, f'{t}.tif')
125 raster = rxr.open_rasterio(path)
126 if resolution is not None:
127 raster = raster.rio.reproject(
128 raster.rio.crs,
129 resolution=resolution,
130 resampling=rio.warp.Resampling.max)
131 rasters.append(raster)
132 return merge_arrays(rasters, nodata=np.nan)

4.2 Mountaintops Detection
In order to create a visibility network of the Trentino’s mountaintops, a robust method for
the identification of the peaks is required. One possible way consists in getting peaks location
from public sources such as OpenStreetMap[12]. This approach allows for human-validated
mountaintops locations that are recognised by the community. A second approach consists
in inferencing the presence of mountain peaks by exploiting the information contained in
the DEM rasters. This mainly allows to detect the presence of peaks also in areas that are
scarsely labelled by the community. Moreover, a mountain usually has several peaks, but not
all of them are recognised or labelled. As a consequence, secondary peaks may be discarded
by using the first approach. Therefore, the approach adopted for the proposed solution relies
on the inference from DEM data, providing a scalable and customizable approach for finding
mountain peaks.

The implementation of the aforementioned approach is represented by the find_peaks func-

12

tion in the src/geo.py module.

raster = rio.open(conf.dem.output)
dem = raster.read(1)
transform = raster.transform
crs = raster.crs
routes = gpd.read_parquet(conf.routes.output)
reg = gpd.read_parquet(conf.boundaries.output)

19 def find_peaks(
20 dem: np.ndarray,
21 size: int,
22 threshold: float
23) -> Tuple[np.ndarray, np.ndarray]:
24 """find_peaks.
25

26 Find the peaks of a digital elevation model (DEM) array that are
27 above a given threshold. The function uses a maximum filter to
28 compare each pixel with its neighbors in a running window of a
29 given size. The maximum filter returns an array with the maximum
30 value in the window at each pixel position. The peaks are the
31 pixels that are equal to the maximum filter output and greater
32 than the threshold. The function returns the indices and values of
33 the peaks.
34

35 :param dem: the DEM array to find the peaks
36 :type dem: np.ndarray
37 :param size: the size of the running window for the maximum filter
38 :type size: int
39 :param threshold: the minimum value for the peaks
40 :type threshold: float
41 :return: a tuple of the indices and values of the peaks
42 :rtype: Tuple[np.ndarray, np.ndarray]
43 """
44 filtered = maximum_filter(dem, size)
45 peaks = (dem == filtered) & (dem > threshold)
46 indices = np.argwhere(peaks)
47 values = dem[peaks]
48 return indices, values

This function finds the local maxima in the provided DEM that are larger than a given
threshold. It is built on top of the maximum_filter function of the SciPy library[13], which
performs a dilation operation on the DEM by replacing each pixel with the maximum value
in its neighborhood. The size parameter determines the shape and size of the neighborhood.
The function then compares the input DEM with the filtered one, and selects the pixels that
are equal, meaning they are not affected by the filtering. These pixels are the local maxima.
The function also applies a boolean mask to filter out the maxima that are smaller than the
threshold. Therefore, all local maxima below that threshold, i.e., below a certain elevation,

13

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html

are neglected.

As depicted in Figure 4, the tuning of the two parameters offers a scalable approach to the
detection of mountaintops. The threshold parameter allows to discard all the detected
peaks below a certain elevation; this allows for an elastic customisation of the definition of
peaks. Moreover, the size parameter controls the density of the detected peaks. The higher
the value, the lower the density of the local maxima, therefore fewer peaks will be detected.
On the other hand, if the objective is to find all the peaks, also close to each other, then
this parameter should be set to a lower value.

<IPython.lib.display.IFrame at 0x7f8bcbf0a090>

Figure 4: Comparison of the peaks detection procedure with different parameters

The reported results are produced with size=50 and threshold=1000 (Figure 5), as they
revealed to be a reasonable trade-off between the number of peaks detected, their sparsity
in space and the computational resources needed for the further analyses, in relation to the
topographical properties of the DEM in the ROI.

The detected peaks are then organised into a GeoPandas dataframe (Table 4), where the
indexes of the peaks in terms of rows and columns positions in the raster are added (columns
row and col). Furthermore, rows and columns are converted into longitude and latitude
coordinates in the reference CRS (i.e., WGS82 - UTM zone 32N), in order to form the
geometry of the dataframe as points. Additionally, the name of each peak is added as a
label column. To retrieve these, an additional function closest_peak_name is provided,
with the aim of assigning a recognizable label to each detected peak.

400 def closest_peak_name(
401 lon: float,
402 lat: float,
403 crs: str,
404 around: int = 1000
405) -> Optional[str]:
406 """closest_peak_name.
407

408 Find the name of the closest natural peak to a given point on a
409 map.
410 The function:
411 1. transforms the longitude and latitude of the point to the
412 coordinate reference system (crs) of the map using the
413 rio.warp.transform function;
414 2. creates an overpy.Overpass object to query the OpenStreetMap
415 database;
416 3. tries to query the database for the nodes that have the
417 natural=peak tag and are within a certain distance (around)
418 from the point;
419 4. returns the name of the closest node if the query is successful
420 and there are nodes found, or None otherwise.

14

421

422 :param lon: the longitude of the point
423 :type lon: float
424 :param lat: the latitude of the point
425 :type lat: float
426 :param crs: the coordinate reference system of the map
427 :type crs: str
428 :param around: the distance in meters to search for the peaks,
429 default to 1000
430 :type around: int
431 :return: the name of the closest peak or None
432 :rtype: Optional[str]
433 """
434 lon, lat = rio.warp.transform(crs, "EPSG:4326", [lon], [lat])
435 #
436 api = overpy.Overpass()
437 closest = None
438 try:
439 result = api.query(f"""
440 node
441 [natural=peak]
442 (around: {around}, {lat[0]}, {lon[0]});
443 out center tags;
444 """)
445 nodes = result.nodes
446 if len(nodes) > 0:
447 closest = nodes[0].tags.get("name", "n/a")
448 except:
449 pass
450 return closest

This function first converts the provided longitude and latitude coordinates of the mountain-
top into the WGS 84 (EPSG:4326) CRS, which is the one adopted by OpenStreetMap[14].
By querying the Overpass APIs, which looks up to the OpenStreetMap data, the name of
the closest peak (identified with tag natural=peak) in a certain range is retrieved.

The elevation of the detected peak, retrieved from the DEM, is also reported in the geo-
dataframe (column elevation). It is important to highlight that the DEM elevation may
not reflect the nominal value of the relative mountaintop, as it depends on how the DEM
was generated, and to the resampling method adopted for downsampling the rasters. An-
other criticality may emerge in case the downsampling resolution is too broad, which may
include multiple existing peaks in the single raster cell; in this case, the labelling procedure
may be updated to look for the highest peak in the area of the raster cell from the API and
use that as a reference, as the resampling method takes the maximum value in the area for
the output. Finally, a boolean column named inside is generated, to identify whether the
peak is inside the ROI or not.

peaks_ix, peaks_values = geo.find_peaks(dem, size=conf.peaks.size, threshold=conf.peaks.threshold)

15

plon, plat = rio.transform.xy(transform, peaks_ix[:, 0], peaks_ix[:, 1], offset='center')
labels = [geo.closest_peak_name(lon, lat, crs) for lon, lat in tqdm(list(zip(plon, plat)))]
#
peaks = gpd.GeoDataFrame(

data={"row": peaks_ix[:,0], "col": peaks_ix[:,1], "elevation": peaks_values, "name": labels},
geometry=gpd.points_from_xy(plon, plat, crs=crs), crs=crs)

peaks["inside"] = peaks.geometry.within(reg.geometry.values[0])

Table 4: Computed GeoDataFrame of detected peaks, including georeferences and metadata.

row col elevation name geometry inside
0 0 770 2663.331055 Wetterspitze - Cima del Tempo POINT (677000.000 5200000.000) False
1 0 899 2354.733887 Riedspitze - Cima Novale POINT (689900.000 5200000.000) False
2 0 1087 2734.199951 Schwarze Riffl - Scoglio Nero POINT (708700.000 5200000.000) False
3 0 1202 2503.150879 Speikboden - Monte Spico POINT (720200.000 5200000.000) False
4 0 1391 3423.681885 Hochgall - Monte Collalto POINT (739100.000 5200000.000) False
...
248 1410 240 1577.568970 Monte Pizzocolo POINT (624000.000 5059000.000) False
249 1424 12 1268.843994 Dosso Giallo POINT (601200.000 5057600.000) False
250 1457 16 1214.766968 Monte Tecle POINT (601600.000 5054300.000) False
251 1495 42 1165.973999 Dosso del Lupo POINT (604200.000 5050500.000) False
252 1495 460 1103.145996 None POINT (646000.000 5050500.000) False

Explore the labels!

Hover over the scatter points to show labels and elevations for each detected peak.

<IPython.lib.display.IFrame at 0x7f8bcbf7db10>

Figure 5: Labelled mountaintops detected with parameters size=50 and threshold=1000

4.3 Visibility Analysis
The proposed Peaks Visibility Network (PVN) consists in a weighted graph representation
of the detected peaks. The nodes of the graph represent the peaks, and the edges represent
the visibility between them. An edge is created for each pair of peaks if they are considered
to be visible to each other. The edges are weighted according to a visibility score based on
the inverse of their distance. As the main focus is on the ROI, the visibility between the
peaks inside the ROI and all the peaks detected both inside and outside the ROI is checked.
This means that the peaks outside the ROI are used exclusively as targets for the visibility
score of the peaks inside the ROI. Therefore, the final ranking and results are performed
only on the mountaintops inside the ROI. Similar visibility analyses are also performed on
the routes within the ROI to provide an overview of the most panoramic mountain trails.

16

4.3.1 Visibility Definition

Prior to the computation of the PVN, the definition of visibility was required. In the context
of the proposed solution, several assumptions were made:

1. the weather conditions are assumed to provide a perfect line of sight between two
points, without limiting the view in any way;

2. the curvature of the Earth is not taken into consideration for the computation of the
visibility;

3. the human eye of the observer can see objects at any distance;
4. the observer has zero height.

Possible improvements are described in Section 5. The function is_visible is defined as
follows:

102 @njit
103 def is_visible(
104 dem: np.ndarray,
105 peak1: Tuple[int, int],
106 peak2: Tuple[int, int],
107 tol: float = 0
108) -> bool:
109 """is_visible.
110

111 Check if two peaks are visible from each other on a digital
112 elevation model (DEM) array.
113 The function:
114 1. uses the bresenham_line function to get the coordinates of the
115 line between the two peaks;
116 2. computes the sight line as a linear interpolation between the
117 heights of the two peaks;
118 3. subtracts a tolerance value from the DEM heights along the
119 line;
120 3. returns True if all the DEM heights are below or equal to the
121 sight line, and False otherwise.
122 The function is decorated with @njit to speed up the computation
123 using Numba.
124

125 :param dem: the DEM array to check the visibility
126 :type dem: np.ndarray
127 :param peak1: the coordinates of the first peak as a tuple of
128 (y, x)
129 :type peak1: Tuple[int, int]
130 :param peak2: the coordinates of the second peak as a tuple of
131 (y, x)
132 :type peak2: Tuple[int, int]
133 :param tol: the tolerance value to subtract from the DEM heights,
134 default to 0

17

135 :type tol: float
136 :return: True if the peaks are visible from each other, False
137 otherwise
138 :rtype: bool
139 """
140 y1, x1 = peak1
141 y2, x2 = peak2
142 z1, z2 = dem[y1, x1], dem[y2, x2]
143 y, x = bresenham_line(x1, y1, x2, y2)
144 sight = np.linspace(z1, z2, len(x))
145 points = np.empty((len(y),), dtype=dem.dtype)
146 for i, yi in enumerate(y):
147 points[i] = dem[yi, x[i]]-tol
148 return np.all(points <= sight)

The procedure identifies the indexes in the raster and the elevations of the two peaks in input.
It subsequently applies the Bresenham’s Line algorithm[15] [16], which detects all the raster
cells that represent the approximation of a straight line between two cells containing the
observed peaks. This version of the algorithm integrates a balancement of the positive and
negative errors between x and y coordinates by leveraging an integer incremental error[17].

51 @njit
52 def bresenham_line(
53 x0: int,
54 y0: int,
55 x1: int,
56 y1: int
57) -> Tuple[List[int], List[int]]:
58 """bresenham_line.
59

60 Compute the coordinates of a line between two points using the
61 Bresenham's algorithm. The function is decorated with @njit to
62 speed up the computation using Numba. The function returns a tuple
63 of two lists, one for the y-coordinates and one for the
64 x-coordinates of the line.
65 Reference:
66 https://en.wikipedia.org/w/index.php?title=Bresenham%27s_line_algorithm&oldid=1195842736
67

68 :param x0: the x-coordinate of the first point
69 :type x0: int
70 :param y0: the y-coordinate of the first point
71 :type y0: int
72 :param x1: the x-coordinate of the second point
73 :type x1: int
74 :param y1: the y-coordinate of the second point
75 :type y1: int
76 :return: a tuple of the y-coordinates and x-coordinates of the

18

77 line
78 :rtype: Tuple[List[int], List[int]]
79 """
80 dx = abs(x1 - x0)
81 dy = -abs(y1 - y0)
82 sx = 1 if x0 < x1 else -1
83 sy = 1 if y0 < y1 else -1
84 err = dx + dy
85 y, x = [], []
86 while True:
87 y.append(y0)
88 x.append(x0)
89 if x0 == x1 and y0 == y1: break
90 e2 = err * 2
91 if e2 >= dy:
92 if x0 == x1: break
93 err += dy
94 x0 += sx
95 if e2 <= dx:
96 if y0 == y1: break
97 err += dx
98 y0 += sy
99 return y, x

Afterwards, an array of the size equal to the number of intersected cells is drawn, with values
linearly spaced between the elevations of the two peaks, representing the sight line. If all
cells between the two peaks cells have elevation values less than their respective point on the
sight line, then the two peaks are considered visible. For scalability, the possibility of adding
a tolerance to the visibility check is added; however, for the reported results it was not set.
A representation is depicted in Figure 6. From the figure, it is possible to highlight another
criticality of the provided approach that should be refined: the linearly spaced sight line
is an imprecise assumption, therefore it may be refined by spacing the sight points based
on the real trajectory of the line. Precisely, the linearly spaced sight points are ideal in
the case of a perfect diagonal between two peaks, i.e., the two peaks are on the opposite
corners of a squared subgrid in the raster. However, this approximation may result critical
primarily in the case of close peaks with a large elevation difference. Reasonably, the higher
the resolution of the DEM raster, the more precise will be the representation of the sight
line, and more reliable will be the visibility results.

4.4 Peaks Visibility Network
The Peaks Visibility Network (PVN) is an undirected graph with weighted edges. Each
detected peak is a node, and is represented by a tuple containing its position in the raster in
terms of rows and columns. In this way, it is straightforward to access for further analyses.
The edges of the PVN represent the visibility between peaks, with visibility as explained in

19

Figure 6: A representation of the Bresenham’s Line algorithm and the visbility results in
different cases.

Section 4.3.1. Formally, the PVN is defined as follows:

PVN =
⎧{
⎨{⎩

𝒩 = (𝑦𝑝𝑎
, 𝑥𝑝𝑎

) ∀𝑝𝑎 ∈ 𝑃𝑎
ℰ = ((𝑦𝑝𝑖

, 𝑥𝑝𝑖
), (𝑦𝑝𝑎

, 𝑥𝑝𝑎
)) ∀𝑝𝑖 ∈ 𝑃𝑖, ∀𝑝𝑎 ∈ 𝑃𝑎, 𝑣(𝑝𝑖, 𝑝𝑎) = 𝑇

𝒲 = 𝑠(𝑝𝑖,𝑝𝑎) ∀(𝑝𝑖, 𝑝𝑎) ∈ ℰ

where 𝒩, ℰ, and 𝒲 are respectively the nodes, the edges and the edge weights of the PVN,
𝑃𝑎 is the set of all the detected peaks, both inside and outside the ROI, 𝑃𝑖 is the set of the
only detected peaks inside the ROI (𝑃𝑖 ⊆ 𝑃𝑎), 𝑣(𝑝𝑖, 𝑝𝑎) is the is_visible function between
points 𝑝𝑖 and 𝑝𝑎. The function 𝑠(𝑝𝑖,𝑝𝑎) is the visibility score between two peaks, and it is
defined later.

In order to assign the edges in an efficient way, a visibility matrix of the peaks is computed.
The compute_visibility_matrix is a function that computes a visibility matrix between
two sets of coordinates: points1 and points2. A visibility matrix represents the output of
the function, with values set to 1 in case of visibility between two points, 0 otherwise. In
case the two sets of coordinates were the same, the output matrix would be symmetrical,
and with a shape of 𝑛 ∗ 𝑛, where 𝑛 is the number of detected peaks. Therefore, in order to
improve the efficiency of the procedure, a check is performed on the two sets of coordinates
to verify if they are the same. If they are, then only half the matrix will be filled, by avoiding
the check of the already processed couples of points. The visibility between a peak and itself
(i.e., the diagonal if the matrix is symmetrical) is also set to zero. In the case on the proposed
solution, however, the two sets of peaks are different, since the check is performed between
the detected peaks inside the ROI (𝑃𝑖), and all the peaks detected (𝑃𝑎), both inside and

20

outside the ROI. This means the output visibility matrix will be of shape 𝑛 ∗ 𝑚, where 𝑛
is the number of detected peaks inside the ROI (𝑛 = |𝑃𝑖|), and 𝑚 is the number of all the
detected peaks (𝑚 = |𝑃𝑎|), with 𝑛 ≤ 𝑚.

151 @njit(parallel=True)
152 def compute_visibility_matrix(
153 dem: np.ndarray,
154 points1: np.ndarray,
155 points2: np.ndarray
156) -> np.ndarray:
157 """compute_visibility_matrix.
158

159 Compute the visibility matrix between two sets of points on a
160 digital elevation model (DEM) array.
161 The function:
162 1. uses the is_visible function to check the visibility between
163 each pair of points;
164 2. returns a boolean matrix with the visibility status of each
165 pair of points;
166 3. optimizes the computation by skipping the same peak and using
167 symmetry if the two sets of points are equal.
168 The function is decorated with @njit and parallel=True to speed up
169 the computation using Numba.
170

171 :param dem: the DEM array to compute the visibility matrix
172 :type dem: np.ndarray
173 :param points1: the first set of points as an array of coordinates
174 (y, x)
175 :type points1: np.ndarray
176 :param points2: the second set of points as an array of
177 coordinates (y, x)
178 :type points2: np.ndarray
179 :return: the visibility matrix between the two sets of points
180 :rtype: np.ndarray
181 """
182 visibility = np.zeros((len(points1), len(points2)), dtype=np.bool_)
183 eq = points1.shape == points2.shape and (points1==points2).all()
184 for i in prange(len(points1)):
185 d = i if eq else 0
186 for j in prange(d, len(points2)):
187 if points1[i][0] == points2[j][0] and points1[i][1] == points2[j][1]:
188 continue # skip same peak
189 if is_visible(dem, points1[i], points2[j]):
190 visibility[i, j] = 1
191 return visibility

Once the visibility matrix is computed, the qualitative information about the visibility is

21

obtained. However, the visibility of a mountaintop that is close to the observer may be
weighted differently compared to a peak that is more distant. To this end, a visibility score
is computed for each edge in the PVN, based on the distance between the pairs of peaks.
The visibility score 𝑠(𝑝1,𝑝2) of a pair of peaks 𝑝1 and 𝑝2 is computed as follows:

𝑠(𝑝1,𝑝2) = 1
1 + (𝑤 ∗ 𝑑(𝑝1,𝑝2) ∗ 10−3)

where 𝑑(𝑝1,𝑝2) is the distance in metres between the pairs of peaks 𝑝1 and 𝑝2, and 𝑤 is a
weight assigned to the distance. This is useful to calibrate the weight of the distance on the
final score, depending on the use case. If 𝑤 = 0, then the score is independent of the distance.
The function for computing visibility scores is compute_visibility_score, which relies on
the function compute_raster_distance for obtaining the distances in metres. The latter
transforms the peaks coordinates in terms of rows and columns into a set of coordinates
in longitude and latitude. Subsequently, it computes the elementwise distance between
the points contained in the lists p1 and p2. Since the CRS of the provided DEM is the
“WGS 84 - UTM zone 32N” (EPSG:32632), whose measurement unit is in metres, no further
reprojection is needed. Finally, the PVN assigns the computed visibility scores as weights
to the edges. This procedure is represented by the function compute_visibility_network.

240 def compute_visibility_scores(
241 p1: np.ndarray,
242 p2: np.ndarray,
243 crs: str,
244 transform: Callable,
245 w: float = 1
246) -> pd.Series:
247 """compute_visibility_scores.
248

249 Compute the visibility scores between two sets of points on a
250 raster array.
251 The function:
252 1. computes the distances between the points using the
253 compute_raster_distances function;
254 2. applies a formula to convert the distances to scores between 0
255 and 1, based on the inverse of the distance of the peaks;
256 3. returns the scores as a pandas Series.
257

258 :param p1: the first set of points as an array of coordinates
259 (y, x)
260 :type p1: np.ndarray
261 :param p2: the second set of points as an array of coordinates
262 (y, x)
263 :type p2: np.ndarray
264 :param crs: the coordinate reference system of the raster
265 :type crs: str
266 :param transform: the transformation function to convert the

22

267 coordinates to longitude and latitude
268 :type transform: Callable
269 :param w: the weight parameter for the distance, default to 1
270 :type w: float
271 :return: the visibility scores between the points
272 :rtype: pd.Series
273 """
274 dist = compute_raster_distances(p1, p2, crs, transform)
275 return (1/(1+(w*dist*1e-3)))

194 def compute_raster_distances(
195 p1: np.ndarray,
196 p2: np.ndarray,
197 crs: str,
198 transform: Callable
199) -> pd.Series:
200 """compute_raster_distances.
201

202 Compute the distances between two sets of points on a raster
203 array.
204 The function:
205 1. converts the points to numpy arrays;
206 2. transforms the row and column coordinates to longitude and
207 latitude using the transform function;
208 3. creates geopandas GeoDataFrames for each set of points with the
209 given coordinate reference system (crs);
210 4. computes the distances between the points using the geopandas
211 distance method;
212 5. sets the index of the distances as a MultiIndex with the row
213 and column coordinates of the points;
214 6. returns the distances as a pandas Series.
215

216 :param p1: the first set of points as an array of coordinates
217 (y, x)
218 :type p1: np.ndarray
219 :param p2: the second set of points as an array of coordinates
220 (y, x)
221 :type p2: np.ndarray
222 :param crs: the coordinate reference system of the raster
223 :type crs: str
224 :param transform: the transformation function to convert the
225 coordinates to longitude and latitude
226 :type transform: Callable
227 :return: the distances between the points
228 :rtype: pd.Series
229 """
230 p1, p2 = np.array(p1), np.array(p2)

23

231 p1_lon, p1_lat = rio.transform.xy(transform, p1[:,0], p1[:,1], offset='center')
232 p2_lon, p2_lat = rio.transform.xy(transform, p2[:,0], p2[:,1], offset='center')
233 cdf = gpd.GeoDataFrame(geometry=gpd.points_from_xy(p1_lon, p1_lat), crs=crs)
234 pdf = gpd.GeoDataFrame(geometry=gpd.points_from_xy(p2_lon, p2_lat), crs=crs)
235 dist = cdf.distance(pdf)
236 dist.index = pd.MultiIndex.from_arrays(p1.T, names=["y", "x"])
237 return dist

278 def compute_visibility_network(
279 dem: np.ndarray,
280 peaks: pd.DataFrame,
281 crs: str,
282 transform: Callable
283) -> nx.Graph:
284 """compute_visibility_network.
285

286 Compute the visibility network between a set of peaks on a digital
287 elevation model (DEM) array.
288 The function:
289 1. creates an empty networkx Graph object;
290 2. filters the peaks that are inside the DEM bounds;
291 3. adds the peaks as nodes to the Graph object;
292 4. computes the visibility matrix between the peaks using the
293 compute_visibility_matrix function;
294 5. finds the indices of the visible pairs of peaks;
295 6. computes the visibility scores between the visible pairs of
296 peaks using the compute_visibility_scores function;
297 7. adds the visible pairs of peaks as edges to the Graph object
298 with the visibility scores as weights;
299 8. returns the Graph object representing the visibility network.
300

301 :param dem: the DEM array to compute the visibility network
302 :type dem: np.ndarray
303 :param peaks: the DataFrame of the peaks with their coordinates
304 and geometry
305 :type peaks: pd.DataFrame
306 :param crs: the coordinate reference system of the peaks
307 :type crs: str
308 :param transform: the transformation function to convert the
309 coordinates to row and column
310 :type transform: Callable
311 :return: the Graph object of the visibility network
312 :rtype: nx.Graph
313 """
314 G = nx.Graph()
315 peaks_inside = [(p['row'], p['col']) for _, p in peaks[peaks.inside].iterrows()]
316 peaks_all = [(p['row'], p['col']) for _, p in peaks.iterrows()]

24

317 G.add_nodes_from(peaks_all)
318 visibility = compute_visibility_matrix(dem, np.array(peaks_inside), np.array(peaks_all))
319 ix1, ix2 = np.nonzero(visibility)
320 p1 = [(p['row'], p['col']) for _, p in peaks[peaks.inside].iloc[ix1].iterrows()]
321 p2 = [(p['row'], p['col']) for _, p in peaks.iloc[ix2].iterrows()]
322 w = compute_visibility_scores(p1, p2, crs, transform)
323 G.add_edges_from(list(zip(p1,p2)), weight=w)
324 return G

The obtained PVN is depicted in Figure 7, which shows the visibility connections of each
detected mountaintop and provides a comparative overview of the connection degrees of
the nodes and their visibility scores. The total score, i.e., the sum of all the weights of
the edges of an observed peak, is added to the mountaintops geodataframe. As a result,
the mountaintops with higher visibility scores are represented in Table 5. It is natural
to observe that the mountaintops with higher visibility scores are the ones with greater
elevation (Figure 8).

peaks['score'] = [np.sum([
d['weight'] for u, v, d in G.edges(node, data=True)

]) for node in G.nodes()]

Table 5: Metadata of the most panoramic mountaintops.

name elevation score
153 Cima Presanella 3551.854004 43982.139194
90 Punta Penia 3342.749023 40791.724952
158 Cima Brenta 3152.949951 40791.724952
162 Cima Tosa 3162.955078 38512.857636
96 Monte Cevedale 3763.043945 37145.537247
165 Anticima di Monte Fumo 3433.218018 36689.763784
108 Cimon del Latemar - Diamantiditurm 2839.964111 36461.877052
155 Cima d'Asta 2843.674072 36233.990321
240 Punta di mezzodì 2253.288086 36006.103589
233 Cima Palon 2232.784912 35094.556663

<IPython.lib.display.IFrame at 0x7f8bd26c0690>

Figure 7: Peaks Visibility Network showing visibility for each peak. The size of the nodes
is their degree, the color is their visibility score.

4.5 Routes Visibility Analysis
Thanks to its scalability, the aforementioned approach can be easily extended to the analysis
of the visibility of routes, with the aim of finding the most panoramic ones. Given the nature
of the research question, the analysis is performed exclusively on mountain trails; however,

25

Figure 8: Correlation visualization between mountaintops elevation and their visibility score.

the following procedures can be extended to integrate other types of routes such as public
roads.

To compute the visibility score for each route, a naive approach was followed. As emerged
from the data analysis phase (Section 3), the geometries contained in the provided shapefile
of the mountain trails are of type LineString. Since the application of the visibility analysis
to sets of points is computed on raster data, then the conversion of the routes to a raster
format is required. Therefore, a binary-valued matrix with the same dimensions of the DEM
raster is computed, assigning values equal to 1 to the cells that are crossed by the routes, and
0 to the others. An example of representation of the rasterized routes is shown in Figure 9.

Once the routes are converted to a raster format, it is straightforward to apply the visibil-
ity analysis procedures described in Section 4.4. Basically, the naive approach consists in
treating each cell of the raster that is crossed by at least one route as an observed peak.
Afterwards, as aforementioned, a visibility matrix, and subsequently the visibility scores
matrix are computed. Finally, for each route, the panorama score is defined as the sum of
all the visibility scores of the cell composing such track. However, it is evident that longer
routes are more likely to have a panorama score higher than shorter routes, as they occupy
more cells in the raster. Due to the sparse distribution of the routes length (Section 3), it
is necessary to normalize the scores on the length of the routes. The entire procedure is
represented by the function compute_routes_score.

327 def compute_routes_score(
328 dem: np.ndarray,
329 routes: gpd.GeoDataFrame,
330 peaks: pd.DataFrame,
331 crs: str,

26

332 transform: Callable
333) -> gpd.GeoDataFrame:
334 """compute_routes_score.
335

336 Compute the panorama score for each route on a digital elevation
337 model (DEM) array based on the visibility of the peaks.
338 The function:
339 1. rasterizes the routes geometry to match the DEM shape and
340 transform;
341 2. extracts the coordinates of the rasterized routes;
342 3. extracts the coordinates of the peaks;
343 4. computes the visibility matrix between the routes and the peaks
344 using the compute_visibility_matrix function;
345 5. finds the indices of the visible pairs of routes and peaks;
346 6. computes the visibility scores between the visible pairs of
347 routes and peaks using the compute_visibility_scores function;
348 7. creates a score matrix with the visibility scores at the routes
349 coordinates;
350 8. computes the panorama score for each route as the sum of the
351 scores along the route;
352 9. computes the panorama score weighted by the route length;
353 10. adds the panorama score and the panorama score weighted as
354 columns to the routes GeoDataFrame;
355 11. returns the routes GeoDataFrame with the panorama scores.
356

357 :param dem: the DEM array to compute the routes score
358 :type dem: np.ndarray
359 :param routes: the GeoDataFrame of the routes with their geometry
360 :type routes: gpd.GeoDataFrame
361 :param peaks: the DataFrame of the peaks with their coordinates
362 and geometry
363 :type peaks: pd.DataFrame
364 :param crs: the coordinate reference system of the DEM and the
365 routes
366 :type crs: str
367 :param transform: the transformation function to convert the
368 coordinates to longitude and latitude
369 :type transform: Callable
370 :return: the routes GeoDataFrame with the panorama score and the
371 panorama score weighted
372 :rtype: gpd.GeoDataFrame
373 """
374 rasterized = rio.features.rasterize(
375 routes.geometry, out_shape=dem.shape, transform=transform, fill=0)
376 routes_coords = np.transpose(np.nonzero(rasterized))
377 #

27

378 peaks_all = peaks[['row', 'col']].values
379 visibility = compute_visibility_matrix(dem, routes_coords, peaks_all)
380 routes_ix, peaks_ix = np.nonzero(visibility)
381 rs = routes_coords[routes_ix]
382 ps = peaks_all[peaks_ix]
383 scores = compute_visibility_scores(rs, ps, crs, transform)
384 score_matrix = np.zeros(dem.shape)
385 for i, x in scores.items():
386 score_matrix[i] = x
387 #
388 routes['panorama_score_weighted'] = 0.
389 routes['panorama_score'] = 0.
390 for i, row in tqdm(routes.iterrows(), total=len(routes)):
391 rst = rio.features.rasterize(
392 [row.geometry], out_shape=dem.shape, transform=transform, fill=0)
393 score = np.sum(score_matrix[rst!=0])
394 score_weighted = score/(row.geometry.length/1e3)
395 routes.loc[i, 'panorama_score_weighted'] = score_weighted
396 routes.loc[i, 'panorama_score'] = score
397 return routes

<IPython.lib.display.IFrame at 0x7f8bce279690>

Figure 9: Comparison between a raw LineString route (left) from the trails shapefile, and
its rasterized version (right).

The results of the most panoramic routes are shown in Table 6 and depicted in Figure 10.
In this case, the panorama score normalized on the length is not correlated with any other
variable of the routes. This may indicate an unbiased estimator of the panorama score of
a mountain route, although additional analyses are necessary to verify this. As aforemen-
tioned, this is a naive approach and computing the visibility for each cell of the routes may
result in computationally expensive operations. Therefore, more efficient methods should
be researched for aggregating the routes in a different way, in order to compute the final
panorama score.

Table 6: Metadata of the most panoramic routes.

numero denominaz gr_mont panorama_score_weighted competenza difficolta loc_inizio loc_fine quota_iniz quota_fine quota_min quota_max lun_planim lun_inclin t_andata t_ritorno comuni_toc panorama_score
483 E646 None MARMOLADA / Colac' - Bufaure - L'Aut 3.862061 SEZ. SAT ALTA VAL DI FASSA E VAL DE CONTRIN pr. FORCIA NEIGRA 1771 2486 1771 2454 2030 2170 02:00 01:30 CANAZEI-CIANACEI 7.821029
95 E207 VIA FERRATA ”GIUSEPPE HIPPOLITI” CIMA DODICI - ORTIGARA 3.447369 SEZ. SAT BORGO VALSUGANA, SEZ. SAT LEVICO EEA-F SELLA - località Genzianella ALTOPIANO 902 1950 902 1970 6480 6780 03:15 02:20 BORGO VALSUGANA, LEVICO TERME 22.345980
297 E157A SENTIERO ”ALBERTO GRESELE” CARÉGA - PICCOLE DOLOMITI 3.401106 SEZ. SAT VALLARSA E MALGA STORTA QUOTA 1601 1344 1601 1344 1601 1120 1170 00:55 00:30 VALLARSA 3.816173
192 E207A SENTIERO DELLA GROTTA DI COSTALTA CIMA DODICI - ORTIGARA 3.089812 SEZ. SAT BORGO VALSUGANA E SPIGOLO DI COSTALTA GROTTA DI COSTALTA 1652 1688 1652 1702 220 240 00:10 00:05 BORGO VALSUGANA 0.689643
420 E322C None LAGORAI / Costalta - Croce, LAGORAI / Mànghen ... 2.997636 SEZ. SAT BORGO VALSUGANA E MALGA VALSOLÈRO DI SOPRA PASSO DEL MÀNGHEN 1747 2043 1746 2045 1600 1640 00:50 00:40 TELVE 4.799935

28

<IPython.lib.display.IFrame at 0x7f8bd2c2fa90>

Figure 10: Labelled mountaintops detected with parameters size=50 and threshold=1000

5 Future Work
The presented work suggests a scalable modular pipeline for the visibility analysis of moun-
tain peaks and trails. As aforementioned, the proposed visibility analysis techniques in-
tegrate naive approaches, and are based on several assumptions for simplicity. Therefore,
multiple improvements can be introduced to further strengthen the approach, enhancing
both the accuracy and the validation of the final results.

First, as previously mentioned in Section 4.2, the detection of mountain peaks may be further
strengthened by cross-referencing local peaks inferenced from the DEM, with peaks infor-
mation provided by OpenStreetMap[12]. However, the cross-referencing is advised uniquely
to refine the results inferenced from the DEM, since some secondary peaks may be not
referenced by OpenStreetMap.

Second, the visibility definition is based on the assumptions discussed in Section 4.3.1:

1. the observer has no height;
2. the weather conditions provide a perfect line of sight;
3. the curvature of the Earth has no reflection on the visibility;
4. the observer can see objects at any distance.

To address the first assumption, it would be sufficient to add to the observing point the height
of the observer. However, the other assumptions may result more challenging to handle. A
possible solution can be the integration of a corrected DEM as provided by GDAL in the
gdal_viewshed program[18]. The proposed formula for a corrected DEM DEM𝑐(𝑝1, 𝑝2) in
the context of a visibility check between two points 𝑝1 and 𝑝2 is the following:

DEM𝑐(𝑝1, 𝑝2) = DEM − 𝜆𝑐
𝑑(𝑝1, 𝑝2)2

𝑅
where DEM is the original DEM, 𝜆𝑐 is the curvature factor, 𝑑(𝑝1, 𝑝2) is the distance between
𝑝1 and 𝑝2, and 𝑅 is the radius of the Earth. The curvature coefficient 𝜆𝑐 is computed as:

𝜆𝑐 = 1 − 𝜃𝑟

where 𝜃𝑟 is the refraction coefficient, which varies depending on the atmospheric conditions
and the wavelength. Common values for 𝜃𝑟 are 0 for no refraction (𝜆𝑐 = 1), 1/7 for visible
light (𝜆𝑐 = 6/7), 0.25 ∼ 0.325 for radio waves (𝜆𝑐 = 0.75 ∼ 0.625), and 1 for flat earth
(𝜆𝑐 = 0)[18]. Furthermore, as regards the weather conditions, an advanced approach may
cross-reference with meteorological data.

Third, the panorama score of the mountain trails may integrate further improvements. For
example, not only mountaintops compose the panorama of a route, but also other points
of interest such as lakes, rivers or monuments. Moreover, the analysis of viewsheds may be
integrated in the routes panorama computation, since they provide a complete overview of
the visible area around a given point. Obviously, these analyses are more computationally

29

expensive to undertake, since they require to apply a visibility analysis on all the surround-
ings.

Finally, the overall computational operations can be improved by integrating parallelization
as suggested in Section 2. Also the computation of the routes visibility can be improved, as
processing them point by point is a naive approach, and may result very expensive, especially
with high-resolution DEMs. The visibility between two subsequent cells in the raster is
likely to change by a small degree, therefore it may be possible to integrate topographical
information about the routes to inference the visibility of multiple cells at the same time.

6 Conclusions
The presented work proposes a set of techniques for the analysis of the visibility among
mountain peaks and trails, based on the information of a Digital Elevation Model. After
a preliminary data exploring and preprocessing phase, DEM data is exploited to extract a
set of mountain peaks by means of a local maximum filter. Subsequently, a Peaks Visibility
Network is computed, with edges weighted based on an inverse distance score. Finally, a
technique for computing the panorama score of mountain trails is proposed, where panorama
is based on the visibility between the routes and peaks. The results are the rankings of the
most panoramic mountaintops and mountain trails.

Several improvements are also suggested to enhance the quality and efficiency of the analysis.
The proposed techniques can be used as a baseline for future research, by leveraging on its
scalability.

In conclusion, if you are planning a hiking trip in Trentino and want to enjoy the best
panoramic views, consider following the SAT mountain trail number E646. Nearby, you
will find Punta Penia of Marmolada, which is ranked as the second-best mountaintop for
visibility, according to the presented results.

7 Appendix
7.1 Configuration file
The config.yaml file is intended to be used as interface with the user, in order to customize
the most important parameters, and the overall workflow of the project.

env:
random seed for reproducibility
seed: 50
true to preprocess the data and save locally
prepare_data: true
figures:

output path to save the figures
path: ./docs/plots
figures default width
width: 850

30

dem:
output path to save the DEM
path: ./data/dem
true to download the DEM
download: true
url:

root url for the download
root: https://tinitaly.pi.ingv.it
download endpoint
download: Download_Area1_1.html

tiles to download and process (see TINITALY webpage for codes)
tiles:
- w51560
- w51060
- w50560
- w51565
- w51065
- w50565
- w51570
- w51070
- w50570
downsampling resolution in meters, original is 10 meters
downsampling: 100 # meters
output path to save the processed DEM
output: ./data/dem/trentino.tif

boundaries:
keyword to search for retrieving regional area from ISTAT dataset
region: trento
path:

output path to save the boundaries
root: ./data/boundaries
endpoint of the shapefile to load
shp: Limiti01012023_g/ProvCM01012023_g

output path to save the processed boundaries
output: ./data/boundaries/boundaries.parquet
true to download the boundaries
download: true
boundaries dataset url (zip file)
url: https://www.istat.it/storage/cartografia/confini_amministrativi/generalizzati/2023/Limiti01012023_g.zip

routes:
routes dataset url (zip file)
url: https://sentieri.sat.tn.it/download/sentierisat.shp.zip
output path to save the routes

31

path: ./data/routes
output path to save the processed routes
output: ./data/routes/routes.parquet
true to download the routes
download: true

peaks:
local filter size for peak detection
size: 50
elevation threshold for filtering detected peaks.
Retain only peaks above this threshold
threshold: 1000

7.2 Numba
At the early stages of the code development, the computation of visibility algorithms was
not efficient. To exploit parallelization and speed up the computations, Numba was used[19]

.

Numba is an open source Just-In-Time (JIT) compiler for Python, which converts NumPy
code into machine code. It can leverage vectorization and parallelization, both on the CPU
and on the GPU. In this project, some functions are implemented with the @njit decorator,
which allows for the generation of machine code if compatible. Some functions also exploit
parallelization for better performance.

7.3 Quarto
The production of this report was done with Quarto[20], which is an open-source tool for
the production of both scientific and technical documents. It was employed due to his easy
integration of Python and Jupyter Notebooks.

1. Floriani, L., & Magillo, P. (2003). Algorithms for Visibility Computation on Terrains:
A Survey. Environment and Planning B: Planning and Design, 30(5), 709–728. https:
//doi.org/10.1068/b12979

2. Song, X.-D., Tang, G.-A., Liu, X.-J., Dou, W.-F., & Li, F.-Y. (2016). Parallel viewshed
analysis on a PC cluster system using triple-based irregular partition scheme. Earth
Science Informatics, 9(4), 511–523. https://doi.org/10.1007/s12145-016-0263-5

3. Inglis, N. C., Vukomanovic, J., Costanza, J., & Singh, K. K. (2022). From viewsheds to
viewscapes: Trends in landscape visibility and visual quality research. Landscape and
Urban Planning, 224, 104424. https://doi.org/10.1016/j.landurbplan.2022.104424

4. Podobnikar, T. (2012). Detecting Mountain Peaks and Delineating Their Shapes Using
Digital Elevation Models, Remote Sensing and Geographic Information Systems Using
Autometric Methodological Procedures. Remote Sensing, 4(3), 784–809. https://doi.or
g/10.3390/rs4030784

5. Peucker, T. K., & Douglas, D. H. (1975). Detection of Surface-Specific Points by Local
Parallel Processing of Discrete Terrain Elevation Data. Computer Graphics and Image
Processing, 4(4), 375–387. https://doi.org/10.1016/0146-664X(75)90005-2

32

https://doi.org/10.1068/b12979
https://doi.org/10.1068/b12979
https://doi.org/10.1007/s12145-016-0263-5
https://doi.org/10.1016/j.landurbplan.2022.104424
https://doi.org/10.3390/rs4030784
https://doi.org/10.3390/rs4030784
https://doi.org/10.1016/0146-664X(75)90005-2

6. Fedorov, R., Frajberg, D., & Fraternali, P. (2016). A Framework for Outdoor Mobile
Augmented Reality and Its Application to Mountain Peak Detection. In L. T. De Paolis
& A. Mongelli (Eds.), Augmented Reality, Virtual Reality, and Computer Graphics (Vol.
9768, pp. 281–301). Springer International Publishing. https://doi.org/10.1007/978-3-
319-40621-3_21

7. Tarquini, S., Isola, I., Favalli, M., & Battistini, A. (2007). TINITALY, a digital elevation
model of Italy with a 10 meters cell size (Version 1.1). Istituto Nazionale Di Geofisica e
Vulcanologia (INGV), 10. https://doi.org/10.13127/tinitaly/1.1

8. Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., & Boschi,
E. (2007). TINITALY/01: A new triangular irregular network of Italy. Annals of
Geophysics. https://doi.org/10.4401/ag-4424

9. Istituto Nazionale di Statistica. (2023). Confini delle unità amministrative a fini statistici
al 1° gennaio 2023.

10. Società degli Alpinisti Tridentini (SAT). (2023). Sentieri dell’intera rete SAT.
11. Jordahl, K., Bossche, J. V. D., Fleischmann, M., Wasserman, J., McBride, J., Gerard,

J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D.,
Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., Maxalbert, Bilogur,
A., … Leblanc, F. (2020). Geopandas/geopandas: V0.8.1. Zenodo. https://doi.org/10.5
281/ZENODO.3946761

12. OpenStreetMap contributors. (2017). Planet dump retrieved from https://planet.osm.org.
13. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific
computing in python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-
019-0686-2

14. Wiki, O. (2023). Converting to WGS84 — OpenStreetMap wiki,.
15. Wikipedia contributors. (2024). Bresenham’s line algorithm — Wikipedia, the free

encyclopedia.
16. Bresenham, J. E. (1998). Algorithm for computer control of a digital plotter. In Seminal

graphics: Pioneering efforts that shaped the field (pp. 1–6).
17. Zingl, A. (2012). A rasterizing algorithm for drawing curves. na.
18. Gdal_viewshed – GDAL documentation. (n.d.).
19. Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler.

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6.
https://doi.org/10.1145/2833157.2833162

20. Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2022). Quarto.
https://doi.org/10.5281/zenodo.5960048

33

https://doi.org/10.1007/978-3-319-40621-3_21
https://doi.org/10.1007/978-3-319-40621-3_21
https://doi.org/10.13127/tinitaly/1.1
https://doi.org/10.4401/ag-4424
https://doi.org/10.5281/ZENODO.3946761
https://doi.org/10.5281/ZENODO.3946761
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.5281/zenodo.5960048

	Introduction
	Related Works
	Data Description
	TINITALY Digital Elevation Model
	ISTAT Italian boundaries
	SAT Trentino mountain trails

	Solution and results
	Data Analysis and Preprocessing
	Data Retrieval
	Data Exploration
	Data Preprocessing

	Mountaintops Detection
	Visibility Analysis
	Visibility Definition

	Peaks Visibility Network
	Routes Visibility Analysis

	Future Work
	Conclusions
	Appendix
	Configuration file
	Numba
	Quarto

